Advertisement

Article

ADC Guide, Part 2: the sampling rate

Analog-to-digital converters (ADCs) are one of the most commonly used blocks in embedded systems. Applications of ADCs include current sensing, motor control, temperature sensing and a myriad of others. As a consequence, understanding the basic specifications of an ADC and selecting an appropriate device for the given application is a must for reliable operation and cost-effective design.

This series of articles will begin with the basics of ADCs, and then discuss different characteristics of an ADC that are important to design, including the impact of various irregularities, types of ADCs available on the market, advantages and disadvantages of each type, and how their selection varies from application to application.

The first part of this article series discusses what exactly an ADC is and how an ideal ADC works. The second part explores the “simple” specification of sample rate, along with the considerations that affect selecting the converter to match your needed rate, such as the Nyquist rate, undersampling, and aliasing.

To read Part 1 of the series, click here .

To read Part 2 of the series, click here .

Subsequent articles will go to additional practical aspects and parameters of the ADC.

About the authors

Sachin Gupta is a Senior Applications Engineer in the Global Applications team at Cypress Semiconductor Corp. He can be reached at .

Akshay Phatak is an Applications Engineer with Cypress Semiconductor. He holds a Bachelor's degree in Electronics and Telecommunications form College of Engineering, Pune (India). He likes to work on mixed-signal embedded systems. He can be reached at .

0 comments on “ADC Guide, Part 2: the sampling rate

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.