Advertisement

Blog

Autonomous Vehicles in Transportation, Part 1

The autonomous automobile seems to come and go as a subject in the media as does the autonomous truck for shipping. This trendy topic has a lot of concepts that affect engineering and design. With over fifteen relevant references written on this subject within the last year alone, there was no shortage of information. The focus is on three major issues, the amount of data required, government intervention, and the players in the industry. Each of these subjects would make for a separate blog discussion. For this blog, we shall stick to the data related issues.

Although analog engineering plays a large part in enabling autonomous vehicles, the major argument is around the large amount of data needed for accurate decision making. Combine this with the ever-increasing amount of data being generated by advancing automobile intelligence and the result is a communications overload problem that makes for a great engineering discussion.

Communication has gone from basic analog signal transmission to a bit data rate per second with various solutions boasting about rates of Gb per second. Meanwhile upstream, there is more and more data being generated4 .

  • Just one autonomous car will use 4,000 Gb of data/day
  • Self-driving cars will soon create significantly more data than people—3 billion people’s worth of data, according to Intel

Even more intense data generation figures are predicted. “It was reported by Ford that connected car sensors generate 25 Gigabytes of data per hour, and then by the WSJ that a typical autonomous vehicle generates 4 Terabytes of data in 90 minutes, and then by Intel of 45 Terabits per hour. All are massive numbers, but why so different? It points to a bandwidth problem. The raw data is beyond any auto OEM’s ability to manage, even in 5G, and so the amounts reported could be raw data or some prioritized data, that facilitate core vehicle diagnostics and operating behavior improvements8 .”

It remains to be seen how Terabits of information will be transmitted on current technology that is limited to Gb/sec. The majority of this data has to be communicated internally within the vehicle as well as externally. Furthermore, the vehicle will require location signals such as those from Global Positioning System (GPS) transmission as well as sensors in smart roads.

Within the vehicle, bus overload is already becoming an issue. Communication is going beyond the typical CAN bus to Ethernet levels16 . The increase in the number of sensors in a vehicle is going to complicate this problem even further as each sensor generates more data.

When communicating externally to the vehicle, the limitations are based on the lack of bandwidth in the overcrowded frequency spectrum17 . There is no room to add to the current allocation of frequencies. Those frequencies that are dedicated to data transmission are seeing exponential increases in the amount of data that is being transmitted. The data is increasing faster than the hardware can handle it.

For a larger image visit United States Frequency Allocations, Radio Spectrum

Vehicle locating is a huge issue with the autonomous vehicle. Radar has limitations especially over distance. Thus, sound-based RADAR technology is giving way to light-based LIDAR technology. Lidar, or Light Detection and Ranging, operates on a similar premise as radar. However, LIDAR takes things a step further by sending out a prearranged series of light pulses at regular intervals9 . The speed of light offers relief in location technology local to the vehicle however communication to the data centers will still face the problem of an overcrowded frequency spectrum.

The scary part about all this data is that processing priority is left to the software. “Theoretically, as software companies, with massive real-time data, they can choose to optimize data processing between vehicle operating behavior and the environment beyond the vehicle8 .” Let’s just hope that two autonomous vehicles prioritize the fact that they are headed towards each other before alerting the driver to a low tire pressure due to cold weather.

Regardless of what investors think, software will not be the solution to this problem of “data guzzling” as some refer to it. New hardware with faster communication capability is needed. Data transmission needs to be increased by several magnitudes if the autonomous systems are going to work.

References

  1. Elon Musk: Your future Tesla will drive you where you want to go without you even having to tell it,” Catherine Clifford, Entrepreneurs subpage, CNBC website, 12:52 PM ET Mon, 23 Oct 2017.
  2. Autonomous Car Technology – Past, Present, and Future; “Building the Dream of Automated Driving Cars”, Chris Giarratana, Traffic Safety Store website, Posted on August 17, 2016
  3. Autonomous Trucks: The Future of Shipping Technology; “Technology Connecting the World & Shipping Systems”, Chris Giarratana, Traffic Safety Store website, Posted on October 17, 2017.
  4. Just one autonomous car will use 4,000 GB of data/day”, by Patrick Nelson, DISRUPTOR, Network World | DEC 7, 2016 7:39 AM PT.
  5. Automotive Connectivity Evolves to Meet Demands for Speed & Bandwidth”, by inShare contributed Article on March 7, 2017.
  6. It’s all About Data! Automotive Sensors”, by Paul Webb, Global Product Manager for Autosport, TE Connectivity, November 10, 2017.
  7. Micron Reveals Critical Technologies for Autonomous Vehicles”, press release, SAN FRANCISCO, Sept. 12, 2017.
  8. Massive Autonomous Vehicle Sensor Data – What Does It Mean?, By Todd Simon, May 16, 2017.
  9. Lidar Technology and Automated Vehicles”, Traffic Admin, Posted on October 13, 2016.
  10. Latest Leaks Show That Apple Is Still in The Car Business”, Chris Giarratana Posted on December 20, 2016.
  11. With its leading position in radar-based driver assist systems, Infineon accelerates automated driving advancement”, Press Release, Market News, Munich, Germany and El Segundo, CA, USA, Oct 6, 2017.
  12. Self-Driving Cars Won’t Work Until We Change Our Roads –and Attitudes”, Andrew Ng, Yuanqing Lin, March 15, 2016.
  13. Disrupter Series: Self-Driving Cars” US House or Representatives document # HHRG-114-IF17-20161115-SD002.
  14. The race to autonomous driving; Winning American consumers’ trust”, Craig A. Giffi, Joe Vitale, Ryan Robinson, Gina Pingitore, PhD, Deoitte Insights website, January 23, 2017.
  15. Will Our Data Systems Be Able to Support Self-Driving Cars?” Chris Giarratana, trafficsafetystore website, Posted on June 8.
  16. Automotive-grade Ethernet maximizes bandwidth, minimizes packet loss for connected and autonomous cars”’ Brandon Lewis, Technology Editor, embedded-computing.com website August 2, 2016
  17. United States Frequency Allocations, Radio Spectrum.

1 comment on “Autonomous Vehicles in Transportation, Part 1

  1. michaelmaloney
    August 29, 2018

    We have heard so much coverage on the autonomous industry that somehow we feel that this sector is still hanging on. However, things have never been easy on investors within this particular industry. There is just too much work that is still needed to catch up with progress before this sector can finally go mainstream. There is also bound to be opposition from various parties in varying volume which simply cannot be ignored. Over time, this industry might still win over the hearts of conventional drivers but it obviously requires a lot more time than we had hoped for.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.