Design Considerations in Modern Wireless Power Transfer Systems: Coil Geometry

Recent innovations have enabled the creation of robust and reliable wireless power systems that can be tailored for use in a wide variety of industrial and consumer settings. There are two key design considerations when building such a system. One is frequency of operation , which we’ve explored before and will again more in-depth in our next piece. The other is coil geometry .

Coil geometry refers to the design of the transmitter coil (or transmitter coils) that create the electromagnetic field for the transfer of power to the receiver. There are two proven and reliable geometries that are available on the market today — coil array and perimeter coil . Each has features that make it well-suited to certain situations.

There is generally a trade-off between coil size, performance, and cost. Coil size and cost are inversely related — smaller coils give a better performance, but at a higher cost. This means that a perimeter coil geometry costs less than a coil array for a given charging area.

Beyond cost, the selection of which geometry to use is based on a variety of considerations, including safety, Z-height, efficiency, and power level.

Safety & EMC interference
The key consideration from a safety perspective is the amount of current or flux that’s released or lost during power transfer. Radio frequency (RF) emissions can be dangerous to human health in excessive quantities, while electromagnetic compatibility (EMC) emissions can interfere with other devices. A coil array design allows individual coils to be turned on, which ensures that the receiver coil — the coil on the device being charged — almost always covers most of the transmitter coil. The result is that minimal flux is leaked out. Thus it's easier to achieve safety compliance as power is scaled up.

Z-height refers to the distance of power transfer between the transmitter and receiver coils, measured in vertical height. It is particularly important for the integration of wireless power systems into infrastructure where Z-height enables charging through surfaces — think table tops, office desks, or car dashboards.

Both designs enable Z-height charging, but to slightly different degrees. A coil array presents some difficulty — making coils larger to enable greater distance of power transfer can introduce dead spots. (Think of coils like pixels of a TV screen: The more you have, the greater the resolution, and the finer the level of control.) A perimeter coil system achieves Z-height more easily with increased flux — but again, the safety considerations can restrict the amount of output power.

By energizing specific coils, a coil array provides a better coupling coefficient and thus efficiency. Selective energization of localized coils does not vary significantly based on the position of the receiver on the transmitter. Selective energization also prevents foreign objects — even metal in the receiver device — from getting hot.

Power level
One of the key considerations from a design perspective is ensuring that the charging speed of a wireless power system is better than, or at least equivalent to, that of a wired charger. This means different things for array and perimeter set-ups.

Perimeter coil systems are challenged to stay within ICNIRP (International Commission on Non-Ionizing Radiation Protection) limits as power is increased beyond 40W (although this shouldn’t be a factor when powering one or two cell phones). In terms of scalability, a larger pad area will act to lower the efficiency further, thus potentially reducing the power capacity in the center of the transmitter.

Coil-array type systems, because of their higher coupling coefficients, are not as power-constrained. It is easier to scale the power up (beyond 2k watts) without approaching ICNIRP EMI or RF safety limits. This also enables scalability of the transmitter to cover multiple devices of different power requirements and scalability of charging area without sacrificing power transfer efficiency (although at the cost of more coils).

Coil array is optimal is any environment where you want:

  • High efficiency (70%+)
  • Multiple simultaneous device charging (e.g. a laptop, tablet, cell phone, or wearable device)
  • Compliance with safety regulations without limiting transmit output power
  • The ability to provide high power levels for multiple devices

Perimeter coil is optimal in situations where:

  • Power needs are lower
  • Efficiency is not important, and the lower cost of the coil will not be outweighed by higher energy costs
  • Cross-talk between transmitters is avoided due to proximity
  • Multi-device charging and high power levels or charging speed are not important

6 comments on “Design Considerations in Modern Wireless Power Transfer Systems: Coil Geometry

  1. eafpres
    September 20, 2014

    Hi Fady–you mention 70%+ efficiency.

    Can you note to which part of the system this 70% applies?  In other words, is that a wall plug efficiency and accounts for everything in the system,or is the 70% only for the wireless interface?

  2. eafpres
    September 20, 2014

    Hi Fady–can you explain the function of the two ferrite plates in your system diagram for coil-array designs?

  3. JDPerzow
    September 23, 2014

    Hi eafpres1,

    I will answer for Fady, who is traveling

    RE: Efficiency question–the 70% is power out of the wall to power into the load. It includes the AC-DC adaptor and the receiver regulator. The coil-to-coil efficiency is much higher (>90%)

    RE: Purpose of ferrite shields–These shields concentrate the magnetic field between the reciever and the transmitter coils, thus increasing the captured energy and power transfer efficiency. They also limit RFI and EMC.

  4. etnapowers
    September 23, 2014

    “A perimeter coil is made up of a single large transmitter coil that fills a large area with magnetic current or flux when turned on. Perimeter coils fill the air with flux, enabling 3D charging at very low power levels. However, it is less efficient than a coil array. It's also not as effective for charging multiple devices simultaneously, or charging at high power levels (>2W).”


    I guess that the perimeter coil is less reliable than the perimeter coil., because in case of failure of the external coil, the whole system fails, instead in the case of the array coil,  in case of failure of an external coil, the coils that are near this area could keep on working and avoid an overall failure.



  5. vasanjk
    September 26, 2014


    Can coil array systems have interfernce between the elements of the array and thus have a dilution in the overall energy transfer?

    I suppose coil array systems need separate drivers. The element at the centre may draw lesser current compared to the one at the periphery of the array due to the differences in their geomtry. How is this handled?

  6. Fady_M
    October 22, 2014

    Hi vasanjk,

    Sorry for the delayed reply – It depends upon the implementation approach chosen by any given product engineer however in PowerbyProxi's approach there is only one inverter, regardless of the number of coils and coils are designed and energised in such a way so that they do not interfere with one another and “dilute” the overall energy. The system is smart enough to decide how to power each device under a coil of optimal coils for optimal efficiency.

    Thanks for the question

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.