Advertisement

Blog

How Technology Is Lost: Stories from Ancient and Recent History

Editor’s note: This is a timely blog by Dennis Feucht, especially regarding the title of this blog, since my hard drive just crashed a couple of weeks ago. Fortunately, my data (technology) was not lost because of the existence of back-up hard drives. Enjoy the article

When the third war with the Empire was looming, historian Diodorus Siculus, a Sicilian, went down to Carthage to talk with the leaders. They controlled an important technology which was shortly thereafter lost to Europe.

Carthage was on the north shore of Africa, in Tunisia, across from Italy. Historians refer to it as a Phoenician colony, but the Phoenicians were too few in number to have populated all the ancient colonies around the Mediterranean that are attributed to them. Many of these colonies were Israelite, ostensibly dominated by the tribes of Dan and the Judahite clan of Zarah. Phoenicians and Israelites shared the same written language, paleo-Hebrew, so that it is difficult millennia later to know who was who.

What the Phoenicians had technologically were long-boats. They had them for centuries, extending back to the third millennium BCE. These boats had an eagle masthead and according to historian Cyrus Gordon had twice the tonnage of Christopher Colombus’ largest ship. For centuries, the Phoenicians were the long-haul carriers of the ancient Near-East world.

According to first-century BCE historian Strabo (citing Eratosthenes), the Carthaginians had 300 towns in Atlantis. They told Diodorus that if they lost the war, they would relocate to them using their long-boats. History records that Carthage lost the Third Punic (Phoenician) War (146 BCE) with Rome, and they subsequently disappeared from history along with long-boat technology. After that, only the Norse (Vikings) had similar boats in Europe which they used to establish colonies in Greenland and New England. This was centuries before Columbus’s re-discovery of the Western Hemisphere at Mesoamerica, called Aztlán by the Aztecs, and modified for easier Greek pronunciation to Atlantis . (The whereabouts of Atlantis remain speculative if one reads only Plato’s Timaeus and not Diodorus, Strabo, or Poseidonius.)

Thus we have an account in history of where a transportation technology that was important for centuries in moving people and goods long distances around Europe, the Middle East, the horn of Africa, India, and beyond, was lost to Europeans. Roman ships did not have comparable performance to the long-boats, though durable contents of sunken wooden boats, such as Roman coins and amphorae (vases), have been found off the coasts of Massachusetts, Honduras and Guanabara Bay, Brazil. Long-boat technology was lost to Europe because of war. Roman geopolitical strategists must not have taken into account the loss to the empire of an important technology in the defeat of a rival.

In our time of global interaction, could technology be lost by war or other social factors? Loss need not be caused by a social event but merely by environmental factors. A trend in information technology is toward increasing fragility . Petroglyphs have lasted for millennia. Books and parchments have lasted for centuries, even millennia. In contrast, flash memory drives are rated to reliably hold their data for at most a few decades. Magnetic memory such as audio or video tapes or floppy diskettes in a humid atmosphere fails in only a few years from mold. Non-operating hard-disk drives fail when (not if) ambient moisture eventually penetrates the seals and is not driven out by the heat dissipated during operation. In a warm, humid climate (such as around the Caribbean region), a non-operating HDD stored in humid, unconditioned air will last about a year, sometimes less.

CDs and DVDs are also fragile. A four-CD Deutsche Grammaphon recording of Die Meistersinger von Nürnberg by Richard Wagner was packaged with light foam layers, to cushion the CDs in the holder. I left my copy on a shelf in tropical air for a decade, reopened it, and found to my surprise that the silver recording film layer was cleanly removed, leaving only the transparent polyethylene base. (This has not happened for CDs or DVDs in contact with paper or held up in air.) The plastic foam must have been a culture medium for metal-munching microbes. Conductive foam used for storing integrated circuits also disintegrates in heat and humidity.

The three main causes of environmental biochemical degradation – dust, rust, and must (mold) – take their toll on electronics. Connectors, metal shields, and relay contacts rust, metal traces on boards fail from the corrosive effects of dust and rust, component leads corrode, and mold permeates electrochemical and optical components.

Electronically recorded information is useless without the electronics to read the media. Large 8 inch or Apple II floppy diskettes would be difficult to read today except by nostalgic old-timers maintaining obsolete floppy drives as museum pieces. Old HDDs with Shugart interfaces are also unreadable without considerable effort. Yet a paper book such as Ernest Guillemin’s Introductory Circuit Theory (Wiley, 1953), stored on my bookshelf for over a decade in a hot and humid climate, shows no appreciable signs of deterioration and its content is readily accessible at a glance. Both public and private library books are being stored in a digital medium nowadays while the original books, stripped of their binder for bulk feeding into scanners, are discarded. Some school libraries abandon paper-medium information sources altogether because they occupy valuable room space while an entire library can be stored on a large HDD or two, or in distributed form on the Internet, or even more ephemerally as cloud computing. The minimalist result is that society becomes dependent for information on preservation of a few large repositories, located remotely and under the control of others. As the world goes digital, how much of this information will exist 200 years from now?

Social upheaval can also cause valuable knowledge to be lost from lack of distribution. Some believe that important advances made by Tesla have disappeared from public purview, as have data from German and Japanese advanced-technology projects in the 1930s and ‘40s and from the Russians in the Soviet era. These somewhat mysterious possibilities however, are overshadowed by the mundane loss of project notebooks in companies that quickly lose interest in projects upon their completion or abandonment. The engineers to whom the notebooks have meaning and enduring value move on and by obligation leave the company-owned notebooks behind while the companies dump them as no longer relevant because of a change in project interests. (Note to engineers: if at all possible, make copies of your more valuable technical notebooks and take them with you as an extension of your mind – something you take with you anyway.) Patents perhaps have their greatest institutional value in documenting technical ideas for public dissemination so that they will not be lost in a discarded project notebook.

From a larger perspective, as scientific and engineering knowledge increases superlinearly, the number of persons sustaining this knowledge must also increase superlinearly. It is possible to capture knowledge in the form of information, in explanatory documents of various kinds, but it is only active or “on line” in the minds of those who understand and apply it expertly. Records of explanations only have meaning to those who grasp their significance. If society regresses, the institutions supporting expertise weaken, fewer new people appear who can sustain the knowledge-base, and sci-tech progress slows and even begins to regress in some specialties. At some point of social regression, technological knowledge is lost and with it the ability to work with surviving artifacts of the lost technology. Although this has not at all been the trend of the previous century, there is no basic reason for why it cannot happen during a time of increased social duress in the developed world.

A case in point is close at hand, as analog engineers see the diminishing emphasis on continuous electrical functions give way to digital electronics. Some wonder whether analog electronics might become a lost art to the extent that some of the more advanced or refined aspects of the field might actually have to be rediscovered and recovered in the future. Simplifying insights that some have but are not widespread might be lost.

There is no guarantee that the path of development of technology is optimal or even monotonic, and a return to previous, less developed, or nearly-lost ideas might be the path to advancement in new directions. For instance, although FETs are the dominant transistor nowadays, it was invented decades before the BJT but was not developed. How many more good ideas will remain in that state because of a lack of people to sustain the widening base of technology?

Besides major social upheaval such as that caused by war or revolution, severe economic downturn or global financial failure can disrupt both academic and industrial progress and lead to a reversion of effort to recover slipping concepts. Hopefully, a few people who have mastered topics that regain importance can be found, and seminars, books, or other forms of dissemination flourish from them. Progress can be slowed because not enough engineers and technicians have a sufficiently clear understanding of some concepts. Suppose a leader in analog IC design leaves other less capable engineers to puzzle over some of the subtler aspects of clever designs, and they are unsuccessful in recovering them from a reverse-engineering attempt. Technology is lost. On a national scope, if education institutions underperform, resulting in an insufficient number of competent engineers, then others from rising societies with better test scores step in to sustain the knowledge-base by gaining experience in the failing country. In this case, technology is sustained overall, but is lost in locales. Not only might poor education cause this, the demographics of aging populations might result in too few capable people. The Trilateral world of Japan, North America, and western Europe is aging. At the turn of the millennium, the average age in Japan was 58 and in the USA was 48. In Panama it was 19. How much existing knowledge will not be passed on because of a lack of capable people to sustain the widening base of technology?

16 comments on “How Technology Is Lost: Stories from Ancient and Recent History

  1. Victor Lorenzo
    September 17, 2016

    How much existing knowledge will not be passed on because of a lack of capable people to sustain the widening base of technology?

    Knowledge is power…and money, that's a truth. Human knowledge is no longer a “human” property or good. Corporations are in full control over knowledge now, no matter of its nature, ranging from technology to medicine or even food. NDA's, pattents and contracts limit how widely knowledge can spread.

    Major threat for new human knowledge, in my opinion, resides a bit outside the survival capacity of current storage media.

  2. D Feucht
    September 17, 2016

    Victor,

    You have brought up another very important aspect of the larger picture regarding technical knowledge. I could write several articles on this topic alone, but they would be somewhat afield of electronics per se . I am glad you brought it up.

    We live in a time when the Monopoly end-game is being played out globally, and fewer players control more of the board. We could end up like the monks of the Middle Ages – a remnant trying to preserve what is left of a grander past.

  3. D Feucht
    September 21, 2016

    Danke vielmals, aber es ist besser das Sie auf English schreiben so that others on this site koennen Sie vehstehen. I would appreciate if you would re-post your previous comments auf Englisch, bitte, wenn Sie wollen. Danke.

  4. didymus7
    October 30, 2016

    I don't think the question is what is going to be lost, but rather how much is lost already.  As personel changes at a company, knowledge is lost.  With the present attitude in management that one warm body is as good as another, that warm body leaves and leaves a gap in knowledge.  Sometimes those lab notebooks lack the most important ingredient – how to understand what was meant by those experiments.  What was the thought process that gave rise to those explorations?  At a previous position at this company there were some 40 or 50 lab notebooks on the mundane subject of eddy current position measurement.  I was probably the only one who read a portion of them.  Most of them were unreadable from the standpoint that they were notes jotted down without the connecting thoughts.  So was knowledge lost.

  5. cauthangdanang
    November 8, 2016

    I just want to say thanks for your wonderful post, it is contain a lot of knowledge and information that i needed right now 

     

  6. xika
    November 12, 2016
  7. ClaireEllison
    November 12, 2016

    WOW Dennis, you shared us all the great informationThanks for sharing with us, it was really interesting! This put up truly made my day. You cann't consider just how a lot time I had spent for this info! Thanks!

  8. Benefiter
    November 14, 2016

    It's actually a cool and useful piece of information. I am glad that you shared this helpful information with us.

  9. ClaireEllison
    November 15, 2016

    It's actually a cool and useful piece of information. I am glad that you shared this helpful information with us He received great pleasure from this article. The guys did a good job. I want to continue to read the news of this resource!

  10. Benefiter
    November 17, 2016

    Thank you, I've been seeking for info about this subject matter for ages and yours is the best I have discovered so far.

  11. ClaireEllison
    November 18, 2016
    Excellent article plus its information and I positively bookmark to this site because here I always get an amazing knowledge as I expect.
  12. ClaireEllison
    November 19, 2016

    Thanks for your posting, you've shared me the perfect information, nice message, thanks!

  13. ClaireEllison
    November 20, 2016
    Excellent article plus its information and I positively bookmark to this site because here I always get an amazing knowledge as I expect.
  14. ClaireEllison
    November 21, 2016

    A great post with good questions/ But how to avoid that? I really wanted to send a small word to say thanks to you for the fantastic points you are writing on this site.

  15. tomaste
    September 28, 2017

    Hi Dennis, thanks for your great article! Knowledge is power…and money, that's a truth. Human knowledge is no longer a “human” property or good. Corporations are in full control over knowledge now, no matter of its nature, ranging from technology to medicine or even food. NDA's, pattents and contracts limit how widely knowledge can spread.

  16. tomastena
    September 29, 2017

    Sure! I agree with you, knowledge is power, also knowledge is money:)

Leave a Reply