Advertisement

Blog

The thermic diode, a new potentially revolutionary simple electronic element, Part 2

In the first part of this blog series The thermic diode, a new potentially revolutionary simple electronic element, Part 1 I've described the thermic diode and the related new disciplines of phononics and coherent caloritronics.

These fields of research are showing fast growing interest not only of the researchers in the field of electronics: The best positioned players ready to take on this opportunity are the semiconductor makers that have the right infrastructure for a high volume production. Once the technology is consolidated, the first companies that have taken this challenge will dictate the prizes and will address the new trends of this technology that holds promises of never before experienced thermal efficiencies.

Indeed, one of the principal strengths of the thermic diode consists in the fact that the heat is transferred through the movement of the electrons, not through an increasing of the amplitude of the oscillations of the molecules of the conducting material, as usual. This means that at very low temperatures, near to the absolute zero thermic, there should be electron transmission and not heat dissipation, and moreover the material utilized to build may be selected to operate at low temperatures as superconductors. This opens the way to the massive utilization of superconductors in the field of electronics to create smartphones, computers, tablets and wearable's having and incredible energetic efficiency and thus a huge autonomy in terms of medium time elapsed between two consecutive recharges of the device. (See Figure 1)

Figure 1

The estimation of market figures for semiconductors up to 2020 
(Source superconductors.org)

The estimation of market figures for semiconductors up to 2020 (Source superconductors.org)

The heat dissipation, hence, could be dramatically reduced; however, the production of heat is not always an undesirable effect of the flow of the electrical current inside a circuit: indeed the huge thermal efficiency attainable with this solution may be coupled with the thermal harvesting of energy that is a strategy to harvest, store and finally utilize the electric energy to feed electronic circuits (see Figure 2).

Figure 2

A solution to harvest thermic energy to feed an electronic circuit (source: MIT)

A solution to harvest thermic energy to feed an electronic circuit (source: MIT)

By utilizing some organic thermoelectric generators that are devices whose basic principle of working is based on the thermoelectricity technology it is possible to create the electronic energy to recharge an electronic device. The simultaneous utilization of both of the solutions may be a winning strategy to create a self-sustainable electronics setup that would require a very low external amount of energy to work correctly.

The “thermoelectonics ” is hence a huge potential technology; do you think it will be a largely adopted solution for new generation electronic devices?

4 comments on “The thermic diode, a new potentially revolutionary simple electronic element, Part 2

  1. ledlighter
    March 30, 2016

    It appears to me that these two articles are dated a couple of days too early.

  2. jimfordbroadcom
    March 30, 2016

    My thoughts exactly!  April Fool's Day is not until this Friday.

  3. Peter.Checkovich_#2
    March 31, 2016

    This might be real. But I have s sneaky suspicion that “The Busy Blogger” is not the author's real name. Furthermore, there is not a single individual, institution or company mentioned in either article. Who's working on this? Is this just the author's opinion? At best, this is extremely poor journalism.

  4. Victor Lorenzo
    April 8, 2016

    I find this kind of novell device very usefull and promising, even with its difficulty to work at absolute zero temperature.

    An early thermoelectronic device prototype was already covered in PlanetAnalog. Take a look at it here http://www.planetanalog.com/author.asp?section_id=3065&doc_id=563910

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.